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Abstract—In this work, a simple model is used to characterize
the learning behaviour of humans. Based on this model, it is pos-
sible to define a similarity measure between two tasks in order to
quantify skill generalisation during the learning of simple motor
tasks by humans. By fully exploring this similarity measure, a
sequence of tasks capable of improving the learning efficiency for
both healthy subjects and patients with motor impairment may
be generated. A validation protocol is introduced and preliminary
experimental results with six subjects are presented to validate
the learning model and the similarity measure. Results show that
the human learning of trajectory tracking tasks can accurately
be modelled by an exponential decay of the average tracking
error. The model fits well when the task is new or far away from
a previously learnt task. Model parameters are used to analyse
the learning performances of the subjects and the influence of
previous tasks learning. Finally, it is shown that the similarity
index can be constructed based on the proposed model to reflect
skill generalisation.

I. INTRODUCTION

Skill generalisation is an important process in the devel-
opment of human motor control, specifically in the expansion
of the repertoire of motor skills. In the development of new
motor skills, humans build on a library of established skills
through this generalisation process. Computational modelling
of generalisation can be used to improve the conventional
models of motor learning and control, and understand the
relative complexity of motor tasks. This knowledge can po-
tentially be utilised in several applications, such as to improve
the training regime for athletes, improving the learning of
precision manipulation skills or even the planning of effective
motor rehabilitation treatment.

The work reported in this paper is primarily motivated
by the application of robot-assisted rehabilitation of motor
impairment. In this application, a patient with neuromotor
impairment (such as a stroke survivor) undergoes physical
therapies consisting of exercises in order to regain the motor
skills lost due to the trauma. Robotic assistance has been
identified as having significant potential in this exercise, when
used in conjunction with supervision from clinical experts [1].
In the development of these robotic devices, in addition to
the physical assistance that has been much studied recently,
it is also important to design the exercises such that the
difficulty is suitable for the stage of recovery and/or the set of
motor capabilities of the patient [2]. A systematic framework
for defining or assigning these exercises would be ideal for
implementation on a robotic rehabilitation system, due to its
quantifiable and logical nature, and would provide significant
potential in assisting clinicians in their tasks. Specifically, it
would be advantageous to be able to assign exercises which

are both not too close to, but also not too far from previously
completed exercises, to fully motivate the movements of the
patient, leading to a possible improvement in the recovery rate.
Therefore, an understanding of how motor skills generalise
from a task that is learnt, to another (new) task that is “nearby”
is needed. In this paper, we report our initial findings, in the
endeavour to quantify the “similarity” between tasks in the
context of human motor control.

Task generalisation is an established approach in the clinical
fields such as in physiotherapy. In these fields, intense or
focused exercises are then followed by application of the
learnt skill to a set of variations of task setting. Despite
the importance of the generalisation process in human motor
control, the study of human motor learning is often limited
to a given task or to the reaction/adaptation of the human to
a change of the environment, either kinematic (e.g. a change
of the visuomotor transformation [3]–[6]) or dynamic (e.g. a
change in a force field perturbation [7]–[9]), but with a focus
on modelling the transient and the washout —or after-effect—
more than the actual re-utilisation of previously acquired skills.
In robot assisted rehabilitation therapy, the subject is exposed
to a sequence of exercises. It is intended that this sequence
favour a progressive re-learning of skills. In this perspective,
this work is a preliminary case study to investigate the effect of
intermediate tasks in the successive learning of tasks in healthy
subjects.

Examples of studies on the learning of successive motor
tasks and the associated skills transfer can be found in lit-
erature. These studies can be classified into three modes of
generalisation:

• Performing a task with one body segment (e.g. elbow)
influences the subject’s ability to perform the same task
with another segment (e.g. shoulder) either in a positive
way: transfer or a negative way: interference [10], [11].

• The ability to perform a task with the dominant arm can
transfer to the non-dominant arm in some conditions,
mostly depending on the subject’s degree of handed-
ness [12]–[14].

• The transfer of the learning of one task [15], [16], or a set
of tasks [17], to the learning process of another relevant
task has also been demonstrated in various degrees. Ad-
ditionally, a negative interference has also been observed
when the two tasks are clearly in opposition [18].

The body of work in the third category represents the
most relevant background to the work in this paper. Within
this category, it is suggested that the similarity between two



different tasks plays an important role in the transfer process.
Nevertheless no systematic quantification of the similarity
between two tasks has been reported, to the best of the authors’
knowledge. Thus no conclusion has been drawn on how this
similarity influences the transfer of motor skills. It is the
intention of this paper to establish a measure to quantify the
effects of previous learning on the characteristics of a new
motor task acquisition process. Ideally, this “measure” will be
able to capture the generalisation of motor tasks based on the
similarity between the tasks involved.

It is important to note that there is no one unique definition
of similarity between two tasks, even for a specific subset
of tasks. Motion based tasks can be thought of as being
similar based on the construction of the motion, such as the
components of the muscle groups or motor primitives [19],
[20] used in generating the motion, or even the spatial and
temporal components of the prescribed motion (such as the
frequency domain components that constitute the prescribed
trajectory). However, in this work, we define task similarity
between tasks A and B as the effect that learning Task A
before Task B has on the motor performance (in execution
and learning) of Task B. That is, two tasks are considered
similar if learning one task assists in the learning of the other.
This is based on the fact that the nervous system may transfer
some learning between tasks that share some characteristics
[21]. This definition thus means that any computational model
generated must be compared empirically against subjects’
behaviours.

As our focus relates directly to the generation of motion,
specifically using the upper limb, we focus the study on the
learning of trajectory tracking tasks using one’s hand, where
the participant tries to closely follow a reference trajectory
defined on a 2D plane [22]–[25]. The tasks are carried out by
having subjects holding onto the end effector of a planar robot
to perform the prescribed trajectories associated with each task.
Three distinct tasks are defined and two groups of subjects
were instructed to learn these tasks in different sequences. The
effect of the previously learnt task on the learning dynamics
of the next task was investigated.

II. TASK DEFINITION AND LEARNING ANALYSIS

The aim of this study is to investigate measures for defining
task similarity, based on how the process of learning a new
motor task benefits from having learnt a previous task. This
section explains the hypothesis to be tested in this case study,
the set of tasks considered for the evaluation of successive
learning, the experimental set-up, and the methods of analysis.
A simple model of learning is used to identify the key
characteristics of the learning process for a given subject and
a given task. The effect of learning an intermediate task is
then observed through the identified learning characteristics.
Finally, the same model is extended and used to directly rep-
resent the successive learning of several tasks and to observe
the relation between two different successive tasks in terms of
motor learning capabilities.

A. Task Definition
In trajectory tracking tasks, the participant is instructed to

closely follow a moving target along a predefined path with

a predefined velocity profile. Three planar tracking tasks have
been designed for this experimental case study. The tasks were
2D continuous trajectories and the performance of the task
was defined as the error in tracking this trajectory. Learning is
then the process of improving the performance over multiple
attempts of the task in the presence of feedback, which was
presented as an error dependant score at the completion of
each trial. The task trajectories were designed to be suffi-
ciently fast to prevent subjects from relying on their visual
feedback and instead having to perform them through feed-
forward control [26]. Thus, during this process, it is assumed
that the subjects develop and tune an internal feed forward
representation of the task, thus “learn” the task.

The first task (T1) consists of a circular path (S1) in space
with a bell shaped velocity profile (V1) [27]. The second task
(T2) is an elliptical path (S2) with the same velocity profile,
V1. Finally, the third task (T3) is the elliptical shape (S2)
with a double bell shaped velocity (V2) to differentiate velocity
profiles. The two shapes and velocity profiles are shown in
Fig. 1. Instead of designing the velocity profile in Cartesian
coordinates, the path is parametrised to obtain the tangential
velocity (see Figure 1 (b)) which can be used for different
shapes, for example (T1 and T2). Moreover, the circumference
of both shapes are equal, and velocity profiles are designed
such that the total duration of each trajectory is equal for all
three tasks.

(a) Shapes (b) Tangential Velocities

Fig. 1: (a) Shapes in XY coordinates and (b) tangential velocity
profiles, used to define the different tasks.

B. Experimental Set-up and Protocol

Experiments were conducted with six healthy subjects (5-
Male,1-Female, 24-30 year) using the subject’s dominant hand.
Each participant was informed of the protocol, the goal of
the task and the meaning of the feedbacks before starting
the first trial. The protocol was approved by the Human
Research Ethics committee of The University of Melbourne
(ID: 1545854.1).

The experimental set-up consisted of a manipulandum
placed on a horizontal smooth glass platform and a virtual
interface projected onto opaque white screen above the glass
platform, between the subjects’ eyes and the manipulandum.
The interface displayed the task trajectory, score, and other
feedback (such as timing) to the subject. The subjects sat
on a chair in upright position and held the end effector of
manipulandum through a support structure for the forearm.



(a) TOP VIEW (b) SIDE VIEW

Fig. 2: Schematic of the experimental setup

Pneumatic suspension was provided at the support structure to
ensure smooth motion over the glass platform.

The shape of the trajectory to be learned was displayed on
the screen and the position of the manipulandum handle was
directly mapped to the position of a black dot cursor on the
screen. An experimental trial started from a home position on
the task’s path. Subjects initiated the movement by moving out
of the home position, after which a red dot begun moving along
the task trajectory at the task’s velocity. The subject was asked
to closely follow the red cursor along the given trajectory. A
schematic of a human subject performing a trajectory tracking
is shown in Fig. 2. At the end of each trial the performance
score was provided to the subject to provide motivation and a
self evaluation of their performance. Participants were also able
to see their own path superimposed on the required path. The
reported score was inversely proportional to the average error
of each trial. The trajectory data was recorded for n points at
500Hz. The average task execution error of the ith trial, eav(i)
was calculated as:

eav(i) =
1

n

n∑
j=1

√
(xh,j(i)− xt,j)2 + (yh,j(i)− yt,j)2, (1)

where (xh,j(i), yh,j(i)) denotes the position the trajectory
tracked by human for the ith trial and (xt,j , yt,j) corresponds
to the position of the target trajectory (iteration-invariant). The
score for each trial is computed as

es(i) =
2

eav(i)
, , i = 1, 2, . . . . (2)

This indicates that subject has to learn the task by improving
the score. A moving average of window size 5 is used as a
part of stopping criteria:

êav(i) =
1

min{5, i}

i∑
j=i−4

eav(j),∀i = 1, 2, . . . ., (3)

where eav(j) = 0 for any j ≤ 0. The experiment continued
until the subject succeeded in achieving an êav(i) less than
a predefined success threshold (εs = 0.012m or 12mm) or
the trials reaches a maximum limit (N = 180). This stopping
condition was constructed to ensure that the subject either had

learnt the task, or had reached a steady state where a further
improvement was unlikely.

Participants were randomly assigned to two groups. Group-
1 participants were asked to successively learn tasks T1, T2 and
T3 and Group-2 participants were asked to successively learn
tasks T1 and T3. Task T1 acts as a baseline task for a common
evaluation of subject’s capability in learning a trajectory-based
task while T2 serves as an intermediate step between T1 and
T3 for subjects in Group-1.

In order to mitigate the effects of fatigue, short breaks of 5
minutes were allowed at the end of each task and participants
were allowed to take a few minutes break every 100 trials.

C. Methods of Analysis

1) Learning Model: An exponential function was used to
model the evolution of the tracking error measured over the
training trials. Although several different mathematical models,
such as S-shaped [28] or power laws [29] have been proposed
to represent human motor learning, exponential functions are
the most common [30]–[33]. Nevertheless no example of
analysis of the learning process of trajectory tracking tasks was
found in literature. The choice of an exponential decay function
to model the learning over iterations has thus been driven by
observation of the learning profiles and existing literature.

The trajectory of hand movement during each trial i is
analysed to extract the task execution error eav(i) (see Equa-
tion (1)). In order to remove the outliers from fatigue or
not focusing, trials where the subjects did not fully attempt
to perform the task — as defined by a hand movement not
crossing the middle line of the task — were excluded in the
analysis. The evolution of this performance index was then
modelled as:

eav(i) = a exp−bi +c, i = 1, 2, . . . , (4)

where a, b and c are positive constants that to be identified
from experimental data. In this model (4),

1) the constant c correlates to the steady-state error in the
iteration domain;

2) the constant b defines the subject learning rate for the
given task;

3) the sum of two constants a+c represents the initial error
of the subject for the task.

It is proposed that such a simple model is able to character-
ize a subject’s learning process, allowing analysis of the effect
of learning previous tasks on future tasks. Comparison of rates
b and initial errors a + c across subjects as well as between
groups are thus performed to investigate this effect.

Two variations of the model were considered, both fol-
lowing the exponential decay function (4). In Case-1, the
equation (4) is fit to error for each trial. In Case-2, the model
is fit on the error filtered using a moving average filter of
window size 5. That is, the filter produces a moving average
êav(i) from the information of the last five trials (see Equation
(3)). Case-2 was included as it more accurately represents the
exact instructions given to the subjects in terms of stopping
criteria.

The function fit from MATLAB software (MATLAB and
Statistics Toolbox Release R2014b,The MathWorks Inc, MA)



was used to fit the equation (4) to the performance index.
The coefficients (a, b, c) were calculated with 95% confidence
bounds. The goodness of all the fittings were evaluated using
the coefficient of determination, R2.

2) Successive Learning of Tasks: What we proposed in this
paper is the hypothesis that the learning of the intermediate
task (T2), between the learning of (T1) and (T3), influences
the learning of (T3). Intuitively, if two tasks are similar,
the concatenation of the two curves representing the learning
process of the two tasks will approximate a single learning
process. The extreme case of this hypothesis is constituted by
considering two successive learning processes of the same task:
the obtained learning curve will be reduced to a single learning
process that can be modelled by (4). In order to verify this
hypothesis, these parameters are compared between Group-1
and Group-2 for each task.

In this work, a similarity coefficient sxy is defined for two
tasks Tx (êav,x(i), (ax, bx, cx)) and Ty (êav,y(i), (ay, by, cy)).
Task Tx is finished in N th

x iteration. A combined task Txy(i)
is characterized by (eav,xy(i), ax, bx, cx)) is used. That is,
in Txy , Ty is treated as a continuous learning from the Tx.
More precisely, the similarity of Ty to Tx can be captured
by
(
axe

−bxNx + cx
)
e−bx(i+Nx) + cx: where this model fits

sufficiently good if Ty is a continuous learning from Tx. A
similarity coefficient sxy is then introduced as:

sxy =
var

(
êav,y(i)−

(
aye

−byi + cy
))

var
((
êav,y(i)− (axe−bxNx + cx) e−bx(i+Nx) + cx

))
(5)

where var represents the statistical variance. This similarity
coefficient is used to evaluate successive learnings of (T1) (T2)
(noted [T1T2]), (T2) (T3) (noted [T2T3]) and (T1) (T3) (noted
[T1T3]).

The similarity of the tasks is thus reflected by the fact that
two consecutive learning processes can be modelled as a single
one. Comparison of similarity coefficients between the two
groups and the different tasks are performed.

III. RESULTS AND DISCUSSION

The number of iterations performed by all subjects for all
tasks are tabulated in Table I. In Group-I, only one subject
managed to achieve the desired tracking performance( êavi is
less than the threshold) for all tasks (T1,T2,T3), resulting in
the stopping condition. A second subject reached the success
threshold for task T3 only. In Group-II, no subjects reached
the desired threshold before the maximal number of iterations
(N = 180). Despite this, the decay of the tracking error for
all subjects during the training can be clearly observed (see
Figure 3 as an example).

TABLE I: Number of iterations to learn the task

Tasks
Group-1 Group-2
Subjects Subjects

1 2 3 4 5 6

Trials
T1 45 180 180 180 180 180
T2 148 180 180 N/A N/A N/A
T3 87 180 164 180 180 180

Fig. 3: The evolution of error for all tasks performed by
Subject-3 from Group-1.

A. Learning Model
The exponential learning model (4) was fit to the task

execution error (calculated using equation (1)) for all the tasks
performed by subjects from both groups. Fig. 4 presents a
representative example of the error evolution and the associ-
ated models for both Case-1 (trial-by-trial error) and Case-
2 (moving average error) for Subject 6, T1. The coefficient
of determination of the model for both cases (as defined in
Section II-C1), of all tasks and all subjects are presented in
Fig. 5 and in Table II.

Fig. 4: Curve fitting : Subject-6, Task,T1

Fig. 5: R2 values for Case-1 and Case-2

It can be observed that the model can represent the learning
process of the tracking tasks for all subjects in T1 and T3 with
a minimal R2 coefficient of 0.41 for Case-1 and 0.54 for Case-
2. This confirms that trajectory tracking tasks’ learnings can
be modelled by a simple exponential decay function with an
appropriate error measure.

Nevertheless, it is interesting to note that the learning of
T2 is clearly less well represented by the model than the other
task. As can be seen in Fig. 3, the error evolution for this task



TABLE II: The coefficient of determination,R2

Subject
R2

Case-1 Case-2
T1 T2 T3 T1 T2 T3

Subject 1 0.835 0.136 0.668 0.978 0.387 0.945
Subject-2 0.632 0.399 0.753 0.875 0.714 0.909
Subject-3 0.409 0.063 0.474 0.542 0.254 0.845

Subject-4 0.665 N/A 0.512 0.866 N/A 0.751
Subject-5 0.585 N/A 0.429 0.872 N/A 0.741
Subject-6 0.481 N/A 0.530 0.764 N/A 0.810

appears to not follow an exponential decay but is closer to a
slow, linear reduction. This can be explained by the similarity
of T2 to T1, leading the learning process of T2 to be assimilated
to a natural continuation of the learning of T1 by the subjects
and thus appears to be closer to the “tail” of an exponential
decay. This is this effect which is intended to be modelled in
Section III-C.

As expected the modelling of the moving averaged error,
Case-2, performs better than the modelling of the trial-by-trial
error, Case-1, mainly because the variability of the data is
reduced and also possibly because this directly reflects the
task instructions given to the subjects.

B. Learning parameters
In this analysis, we wish to observe whether learning T2

prior to T3 (Group-1) influences the learning of T3 compared
to learning T3 without learning T2 (Group-2). The evaluation
of learning is based on the parameters extracted from the
modelling performed in Case-2.

In Fig. 6 it can be observed that the a+c value, representing
the initial error state of the subjects at the beginning of
each training is evenly distributed across groups, with a large
spread for T1 but with a significantly reduced spread at the
beginning of the training of T3. This indicates that the initial
common training of T1 acts as a normalization process for
the subjects who reached a “common” baseline, as expected.
It also suggests that the intermediate training of T2 does not
affect the initial performance of T3. It is also observed that the
initial state for T2 is clearly lower reflecting how T2 is similar
to T1 —differing only slightly in shape—, as already reflected
by the limited fitting quality of T2.

Fig. 6: Initial error of all tasks T1,T2 and T3

Fig. 7 compares the learning rate b, reflecting how fast a
subject learns a task. As the learning rates for T3 are similar,
it appears again that the training of T2, does not produce a

real benefit. It is to note that subjects with the slower learning
rate in T1 seemed to benefit more from the training (either
in Group-1 or Group-2). Nevertheless, the limited number of
subjects coupled with the inherent human variability does not
allow a clear conclusion to be drawn. Furthermore, T2 with a b
coefficient appears lower, in coherence with its poor modelling
as an exponential decay.

Fig. 7: Learning rate of all tasks

Similarly, the steady-state value c (Fig. 8) and its evolu-
tion for Group-1 and Group-2 does not show any significant
difference between the two groups. However, the trend does
suggest that the intermediate learning appears to be beneficial
to the final performance achieved by the subjects (lower c
value) despite the potential fatigue for subjects in this group
—who were trained on one additional task.

Fig. 8: Steady state value of error

C. Successive learning modelling
The similarity indices are calculated by considering dual

task learning ([T1T2], [T2T3] and [T1T3]) as a single learning
process (as described by Eq. 5). The values for these indices
are reported in Table III. In this measure, the higher the
similarity index, the greater the similarity between the tasks.

TABLE III: Similarity index

Similarity
Index (sxy)

Subjects
1 2 3 4 5 6

s12 0.698 0.133 0.618
N/A

s23 0.329 0.296 0.368
s13 0.289 0.297 0.516 0.288 0.319 0.316

For Group-1, the similarity index between task T1 and
T2 for Subjects 1 and 3 are two times higher than for any
other combination of tasks. This confirms that the successive
learning of T1 and T2 is close to a continuous learning, and
thus that tasks T1 can be considered closer to T2 than to T3 or



than T2 to T3. However, for Subject 2, the similarity index is
comparatively less. This can also be observed in the data for
Subject 2 by the prominent exponential decay in the learning
of task T2 rather than continuous learning from task T1. This
suggests that this task proximity measure is not necessarily
shared by all subjects and/or that external factors —such as
concentration, fatigue or surprise— can have a relatively high
importance on the learning process. However, the intermediate
learning of T2 does not affect the similarity of T1 to T3 — as
shown by comparable similarity indexes s13 for both groups.
Interestingly, this suggests that the proposed similarity metric
is not necessarily restricted in evaluating the proximity of two
tasks learned directly successively.

IV. CONCLUSIONS AND FUTURE WORK

This case study investigated the learning behaviours in the
successive learning of trajectory tracking. The human motor
learning of trajectory tracking tasks is modelled using an
exponential decay of performance index and is used to assess
the effect of successive learning of tasks. It is observed that
the exponential decay of the error is more prominent if the
learning task is not very similar to previously learnt tasks.
A quantifiable measure to model task similarity is proposed
based on a joint modelling of two learning processes. It is
also observed that differences in the tasks’ velocity profiles
seems to play are more important role in the learning process
than the difference in shape. Future investigation involving
more subjects in order to reduce the inherent effect of human
variability remain necessary to confirm the validity of the
proposed method.
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